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of these effects are derived.

The linear (small-signal) gain regimes of the free-elec-
tron laser have been analyzed extensively by various tech-
niques.'~'® The present paper relies on the formulation of
Ref. 4, expanding the analysis to the case of a transverse
magnetic wiggler (pump) with arbitrary axial variation and
an arbitrary three-dimensional velocity distribution func-
tion of the electron beam. In the low-gain regime
4P /P (0} < < 1{whichisofinterest mainlyfortheapplication
of oscillators) the formulation results in an explicit general-
ized gain expression which can be used to find the effect of
random perturbations in an ideally periodic helical wiggler
field, as well as the effect of the beam transverse velocity
spread, on the gain of the free-electron laser,

The basic structure of the free-electron laser assumed in
most analyses'~'° is that of an amplifier device composed of a
transversely uniform periodoic (helical) transverse magnetic
(“pump” or wiggler) field and an electron beam which prop-
agates along the magnet axis (z axis). The laser amplifies a
TEM optical wave which is propagated along the z axis.

The analysis in Ref. 4 is based on the solution of the

linearlized Viasov equation
f(l) j'(l _e o
e ['XBo(z)] ap )
=z(E(z.u+!ii'E"—’)-i’£—. )

z/

lectron lasers In the Jow-gain r reglmo ® /
f dlng tran&erse veloclty spread and wlggler lncoherency

It is shown that in the smali-signal, low-gain regime, an analytic expression for the gain can
derived which is valid for a general electron distribution function and general longitudinal D
variation of the transverse magnetic field pump. This expression is used to evaluate the effects on

the gain curve due to transverse momentum spread in the beam as well as inaccuracies

(incoherence) in the magnetic pump phase and amplitude. The restricting criteria for the neglect

%_ +u,aBuz) ____ = e(]-:(r,t) + —v(a,ﬂ.ul)xn(r,t )) (38‘
—

= aBu) =),
"_'_‘_l" gaBuzt)=fVpzt),

D VaBuz) = plabuz)/Imoyu)]
&
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where the perturbation on the electron beam distribution /"
(p,2.t )isduetotheoptical fields E{r,z ), B{r, ), and f%p,z)is the
electron beam momentum distribution function in the pump
field Byz).

The magnetic pump field B,[z) can be described from
the vector potential Aglz):

Bylz) = VX Adl2), ()

Ad2) = Ao (2) €, + Aoy(z)ey 3)

and following Ref. 4 we find by solving the electron force
equations the three constants of motion of the electrons in
the static field Ay(z):

alp, z) = p, — (e/c) A, (2), 4)
B, 2) = p, — (e/c}) Ay, 2), (5)
up. 2,0 =0} + 7} + 02" (6)

where e = |e|, a and S are the x and y componeats of the
canonical momentum, and u is the total mechanical momen-
tum of the electron. These variables are independent of z.
Substituting the momentum variables (p, o, p,) in terms of
the new variables (a,58,u) simplifies Eq. (1) into*

38“" plaB,u,z) 3g'”
+ By MebAN ) 4

The transformation of Eqs. (4)~{7) corresponds to the
exact solution of the linearized Vlasov equation in terms of
the pump magnetic field. This formulation allows one to
solve the electron equation to first order {small signal) in the
electromagnetic wave [E(r,¢), Bir,¢ ). It is however, exact to
all orders in the pump field B,,. The distribution function
£%a,B,u) is the distribution in terms of the transverse ca-
nonical momentum a,8 and the total momentum u of the
electrons in the pump field. If the pump is turned on adiaba-

509 J. Appi. Phys. 82(2), February 1% 0021-8§/81 /02059930 6 © 19010m0 n Institute of Physics 599 ,
. W

3

DTIC

ELECTER
OCT 1 198t




"
¢

Ticafly it is also equal to the initial momentum distribution of

the electron beam before entering the interaction region.

The analysis in Ref. 4 proceeds with the solution of Eq.
(7) together with the Maxwell equations (including Poisson’s
equation) for the electromagnetic field and the space-charge
field generated in the beam. In order to derive the free-elec-
tron-laser dispersion equation and explicit gain expressions
in the different gain regimes, a specific z dependence of the
pump field (3) was assumed (helical field):

Alz) = Ay coskyz é, + Ay sinkgz é,. (8)
The tranverse momentum spread of the electron beam was
neglected, and the equilibrium distribution function was tak-
ento be

g%aB.u) = nbla)b(B igu), (9)
where n, is the average electron beam density.

With these assumptions the analysis of Ref. 4 produced
with no further approximations the dispersion equation of
the free-electron laser with a helical magnetic field pump.
The dispersion equation was then solved and expressions for
the laser gain were derived by using analytic approximations
in different regimes. Gain regimes which were identified in-
clude the thermal-beam regime (considering the effect of mo-
mentum spread in the total momentum—u only) the high-
gain, cold-beam, weak-pump regime {collective regime), the
high-gain, cold-beam, strong-pump regime, and the low-
gain, tenuous-cold-beam regime.

In the present paper we focus our attention on the low-
gainregime AP /P (0) < < 1 for both cold and thermal beams,
excluding collective effects. We find in this case that an ex-

plicit gain expression can be derived without resorting to thel

particular field dependence (8) or electron momentum distri-
bution function (9). Since the resulting linear gain expression
would be “exact” in terms of the pump field and electron
distribution function, we examine as a special case the effects
of deviations of the fields and the distribution function from
the ideal forms given by Eqs. (8) and (9).

The detailed analysis in* indicated that the contribution
of the first two terms in the second set of large parentheses in
Eq. (7) is negligible in comparison to the contribution of the
third term. Hence for the sake of simplicity we will neglect
them from now on (this approximation is implicitly used in
all the other analyses.'™'°

We assume that the electromagnetic fields are trans-
versely uniform across the electron beam (plane wave). The
electromagnetic fields are expressed in terms of right-hand
and left-hand circularly polarized transverse vector poten-
tial components A , (z) and A _(2):

1 A
g)= — ——
Eiet) c ot
=2UA e, + AR e +ec, (10)
B(Z,t):va
—"(~—d—1 @, +24_we )e“‘”'+cc (11)
- dz + + dz - - ey -
where

é, =16, +ié)and é_ = I(é, — i¢ ) are respectively the
right- and left-hand circular polarization unit vectors, and
A, =4, —id, 4A_=A4, +id,

With all these assumptions, Eq. (7) now simplifies into

— iog"@Bus) + vyl B} e Buz) = %c‘f’-[p_(a.a,u) A )+ p JaBua) A_A)-2g% ) (12)

where u da df du

gMaBuzt)=g"Nafuzle” " +cc J o = J I I PaBuz) s (@fus)

‘“‘dfr; =Px i‘:’r . o o X §"aB,u.2), (14)

s m:s s:ts: ) “::glntm the distribution function gives rise v, =p, /Mum, (15)
Jzt) = [T, (26, + T (218, ]e~“ +c.c. s =p:Fip, "—‘“:F"ﬁ“f“m F idy, ), (16)

== [f+(2)§+ +i_‘z)é_]¢_‘°" +c-c.. (ls)

where

nefe-ezuf o)l

The exact solution of Eq. (12) is
o YlaBuz’) ..

gMaBuz)= exp(

where H (a,f,u,z) stands for the right-hand side of Eq. (12)
and we assume g'"a,5,4,0) = 0 (with no prebunchmg of the
electron beam). Substitution of (18) in (14) gives

W)J: exp( - iJ: | v,(a.;,'.u.z ")

(18)

[ux {aBuz")

J. =~ i%fj.fj, J; - J: da dB du dz” [exp(iJ: W) p,(a.ﬂ,u,z)]

i @
X [exp( - iJ: v aBur)
+r.laBuz v -(z')l-;;e"(a.ﬁ.u)-
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We now turn to Maxwell’s equations to obtain the elec-
tromagnetic field which is induced by the current (19). The
equation for the electromagnetic wave-vector potential is

2 2
L+ hw= -1, 0 (20)

This second-order equation can be reduced to a first-
order equation if we assume that there is only a forward-
going wave propagating with a wave number ~w/¢c, and
that there is no coupling to a backward-going electromag-
netic wave. We can then reduce {20) to

A 2mi~

which can be readily transformed into an integral equation

1

A, 0=, Qs+ 2 oo

xj:e—“'«i, (Z)dz. (22)

Equations (19) and (22} are a set of two coupled-integral
equations which can be used to solve for the linear evolution
of the electromagnetic field. These equations can be solved
by an 1terauve process To zero order (no interaction} we
have A (z) + (0}, We substitute the zeroth-order
mteratnon in (19) which is in turn substituted into (22) to yield
the expression for the electromagnetic field to first order in

A , (0). The iterative process may be continued in this way to
higher orders.

At present we are interested only in the e linear response
(small-signal) limit and therefore calculate 4 + {2) to first
order:

A, @2)= ( (o)+-—J‘ f J- f da df du dz Jq dz* —-g‘“’(a,ﬁ,u)[exp[’r —_— —)ﬁ]/ ,]
x[exp[ —ij: (;“i - %)dz*] / :}p; b 4.0 +p% 4] 23)

The primed and double-primed parameters p,, p, are all
dependent on a, B, u, and z’ or z”, respectively;
v, = v,(aBur),v] =v,(abuz") The Poynting vector

power density of the fields in Eqs. (10) and {11) is found to be
given by

S=é, ———-—[A+(z)—A (z)+A_(z)—A‘ (z)]+cc
(24)

AP, (1) |4
PO 4,0

LA ] P

This is a general expression for the linear gain in the
low-gain limit which within the limits of the assumptions
used during the derivation is applicable for arbitrary three-
dimensional beam velocity distribution and arbitrary trans-
verse field pump, which can be written in the form (3).

We may now apply Eq. (26) to the case of the Stanford
free-electron laser experiment, '® where we assume a pure
right-hand helical magnetic field (8).

Vo We assume that in (23] the expression in large bold par-

entheses varies very slowly with z in comparison to
expliwz/c), hence instead of (24) we can write
S =2} w¥e) [|A. &) + |A_2)). (25)
Let us now assume that the incident electromagnetic
wave is right-hand circularly polarized [4_(0) =0). The
power gain of this wave 4, () after an interaction distance 1
1S

L fmptuas [ Far it Deens [ (G - S

(26)

transverse velocity spread, and zero transverse canonical
momentum (9).
In this case we get from (16) and (17)

Py = — (e/c)Aet™, (27)

P = {“2 - [(e/c)“o] 2}!/2' (28)
and we see that p,and v, are no longer functions of 2. Equa-

We also assume that the electron beam has negligible_l tion (26) simplifies into

ap ()

N iy

P.(0) "—— er f f J:dr%(oﬂm(f’:

-y

_9% m (5.4_0)1 du dgo(u) sin’j{w/v, — w/c — ko)l (29)

rwherev,,,, is the beam velocity spread in the z direction and

o,
4 c\c¢ P du [Nw/v, —a/c— k)
In the cold-beam limit
Uun /U < <BnA /I, (30)
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B = V.o /c, we may substitute golu) = &{u — u,) into (29).
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Equation (29) then reduces to the conventional gain expres-

1-10,

sion in the low-gain, tenuous-cold-beam regime
ap.() _ 1 _1 (“’_)’ (.’ﬂ)’lg.f’_p

P.(0) 8 Yoo \Uo/ \Po/ po ¢
d {sinf, \?
x;o-o(-%—"), 31)
where

Op=\w/v, — w/c — k), (32)
Pro=le/c), = (e/c)By/k, (33)
Po=(u5 — plo)'? (34)
Yo=(l1 —vh/A) ' (35)

The gain curve (31) obtains its maximum value at
6= ~1.3.

It is worth noting that the simplified form of Eq. (29) is
due to the fact that in the limit of an ideal helical pump field
and a = f = 0, the longitudinal momentum p, {Eq. (28)] isa
motion constant and is independent of z. If, for instance, the
pump field was not helical but linearly polar-
ized [ Aqfz) = A, coskyzé, | instead of (8)], then p,and v, in
Eq. (26) would be still dependent on z in a periodic way [see
Eq. {17)]. The integration over 2’ z” is then not immediate.
We will not elaborate on this case beyond noting that the
gain spectrum for this pump will be rich with harmonics.

We now will examine the effect on the gain of transverse
momentum spread of the electron beam and of irregularities
in the helical magnetic pump field. Of course, if the magnetic
pump field By(z) is known exactly (e.g., measured directly in
a specific experiment), then it is possible to find 4(z) by inte-
grating Eq. (2. If the beam velocity distribution g,(@,5,4) is
also known explicitly, then the gain can be calculated *‘ex-
actly” using the general gain expression (26). In practice we
are interested in estimating the effects on the gain due to a
transverse momentum spread and irregularities in the heli-
cal pump field even if we do not know exactly the beam
velocity distribution and the exact form for the pump field.
We will therefore find the conditions in which the effects on
the gain of transverse momentum spread and of irregulari-
ties in the pump field are significant enough so that (8) and (9)
and consequently (29) and (31} are not valid.

Irregularities in the helical field can be described as am-
plitude and phase modulation of the ideal helical field, so
that

Aolz) = Aolz) coslkoz + 6 (2)]
+ Aolz) sin[koz + 8 (2))¢, (36)

instead of (8). The amplitude 4{z) is randomly modulated
around an average value <A4yz)> = A4, Theterm ¢ (z}isa
random-phase deviation of the vector potential field Ayjz). It
should be pointed out here that ¢ (z) and 4(z) are not related
in a simple way to the phase and amplitude modulation of
the magnetic field By|z). They can be evaluated only after
integrating Eq. (2).

With Eq. (36) and without assuming (9) we have from
(16)

Py =aTFiB—le/c)Ajz)e™ 1=+ o1, 37

and by expanding (17) to first order in 64,(z), a, and 8 we
obtain

1 1 Do
~—— 1|14+ 8p..
7@ p,(u)( 72 Pl

+acostke +4@)) +Bsinlkez + i), B9

1 1

—r,

v,2) " v ()

(l + %:;o‘{‘spm b4}

+ a coslkez + ¢ (2)] + Bsinfkez + ¢ (Z)]}).

39)
where
8p,o(z)=(e/c)bA(z), {40)
Ayz)=A, + 6A,2). (41)

Itis a very good approximationtoseta = § = 0inEq.
(37) and substitute in (26)

Py == —(e/c) Aglzle ¥ kot + #1a1, 42)

This is true for two reasons: (i} The transverse momentum
spread a,, is assumed to satisfy a,, < <p,, and therefore the
additive contribution of @ F {8 to (37) and in turn to (26) is
neglibible; (ii) @ and 8 do not have periodic z dependence like
A , (2); therefore they will not contribute a synchronous
term in the integrand of (26) and thus will have a negligible
contribution. On the other hand we cannotseta = 8 = 0
in (39) without careful examination, because v, (z) appears in
the exponents of Eq. (26), and small deviations in v, (z) may
have a significant effect on the integral and spoil the syn-
chronism condition which led to the “resonant™ expression
in Eq. (29) or (31). As for p, (z) [Eq. (38)], we can (to zero
order) approximate it by p, (z) = p, (u) when used in (26).
Again the reason is that the contribution of the first-order
correction is additive and small.

We then get from (26)

APl ) [T T [ J:da dBduds [ dz'ﬁ":uTjTgm (@Bv)

P,0) <
a) w (] _ ~ ’ — ~
”[(;‘4.7, — 2~ ko - )+ o) - )| 3)
where
o) = 220 [ (59,010 + s conlke? + 6 A] + Bin{kef + 401} — 6 ) (4
v,(u) p}
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Using these expressions, we will first examine the effect
of transverse velocity spread on the gain. For the sake of
simplicity we assume now an ideal helical field 4,(z) = 4, |

2
exp[ -_— (L Pio arh sinikof) ]oos(ﬂ - o — ko)'f.
Y, ko P: px
AP() _ @ m er
P_{0) 2 ¢ c

Further investigation of the integral in (46) will not be
carried out at this time. We only note that besides reducing
the gain, the transverse momentum also generates harmonic
frequencies in the gain spectrum. We may also find from (46)
that the condition at which the neglect of the transverse mo-
mentum spread is allowed is

o Pio A
<1
”zoko Po Po

Using the synchronism condition w/c~w/vg, — k, this
can be written as

an/Po < <V/[(1 4+ Bol¥obu], (47)
where
Blo=P10/P0 = eBo/(vomecv ko).
In the relativistic limit (y,> > 1) this condition is
En/Eo< <1/270B1o). (48)

When (47) or (48) is well satisfied we may set in (46) g =0
and recover (29). I

APl _ m ([ (7 . d8olu) Pio(Z) Pio(2”)
P0) " cL fo"“d’fo “dw 5@ Pl
where

m-;() 2o [ sageriz - o o). (52

Notice that the phase deviation y¥{z) is affected not only by
the phase deviation of the helical field vector potential ¢ (z)
but also by the amplitude deviation 54,(2).

The condition that Eq. (51) be reduced to (29) and the
effect of imperfections in the helical field be neglected is

|¥2)| < <7 (53)

for any 0 < z < /. In this condition it is possible to expand the
integrand in (51) to first order in ¥4{z) and the first-order term
will be small compared to the zeroth-order term (29). Condi-
tion (53) may be quite a stringent condition when the interac-
tion length is long. For example, to appreciate the effect of
changes in the magnetic field amplitude assume that the
magnetic field amplitude changes in a linear way along the
axis while the helical phase stays constant:

Bolz) = — [B, + 6B2)] [coskez é, + sinkyz é, ], (54)

6Byz) _ SBdl) z (55)
B, B, |

Integrating (2) using (54) and (55), and comparing to (36) and
(40), we find that
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¢ (2) = 0 and a Maxwellian transverse momentum spread of
the electron beam;

(45)

f rdr exp[ - (v—‘%o—%;—':sin;kor)z] cos(vﬂ — ko)'f. (46)

It is interesting to compare conditions (47) and (48) with
condition (30) for the longitudinal momentum spread, which
can be written in the forms

Prun/Po < <ﬁw7:) A/, (49)
or in the relativistic limit

E.n/Eo< <V A/ (50}
In the regime

L ‘ <1 (i_’-<1)

A (148,887 A 2B,0Vo '
the second being the relativistic expression, we find that the
condition on the transverse momentum spread (47) is more
stringent than the condition on the longitudinal spread.
With high-energy beams this may easily be the case and con-
ditions (47) and (48) may be of practical concern. It is easy to
verify, that condition (48) and (50) are reasonably well satis-
fied for the parameters of the Stanford experiment.'°

We now consider the effect of irregularities in the heli-
cal pump field, and this time we assume for simplicity
agp = 0 [Eq. (9)]. Equation (43) then simplifies into

cos[(vﬂ -2 k) =2+ o) — vt (s1)
0Ade) _ , SByl) z. (56)
A, B, 1

and the resultant phase shift ¢ (/) is negligible. Applying in-
equality (53) at z = [ gives

9Bl  _Be 2
B, b
ForA = 10um, ! =4 m, B,, = 0.05, and B;0 = 1 this re-
quires that |5B,(! }/B,| < < $X 104, which is a quite strin-
gent condition.

We can now appreciate the significance of inaccuracies
in the periodicity and amplitude of the helical field. Small
local deviations in the field period will not cause major
change in the gain expression (29) as long as there is no cu-
mulative phase deviation throughout the interaction length /
which violates (53). In other words, the long-range coher-
ence of the periodic structure is important. We may add that
similar conditions would apply also to the problem of stimu-
lated Compton and Raman scattering of an electromagnetic
wave from electron beams, '!~'* where the coherent length of
the scattering wave may limit the obtainable gain. This may
be an important consideration especially when the scattering
(pump) wave is produced by a low-coherence source like a

(57)
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high-power laser or a wide-band microwave source.

In the case where condition (53} is not satisfied the free-
electron laser gain curve may differ substantially from (31).
For any specific laser structure with pump field which devi-
ates from the ideal helical dependence (8), the integration of
(51) would result different gain curve. A statistical analysis
may be carried out to estimate the quantitative effect of ran-
dom perturbations of the pump field on the laser gain.'* Such
an analysis can yield expressions for the average laser gain,
which for a static pump is essentially an ensemble average
over many randomly perturbed free-electron lasers. For an
electromagnetic pump (stimulated Compton scattering) the
statistical analysis would yicld a time average of the laser
gain.

Detailed statistical analysis of the laser gain in the re-
gime where (53) does not hold is beyond the scope of the
present article. We will only point out that the gain in this
case depends basically on two parameters of the random per-
turbation of the pump field—the phase modulation index
<¥z)> and the pump coherence length /.. Whenever
<¥z)> < <lorl/l, < <1theaverage gain curve is close
to (31). In the limit of short coherence length the average
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gain curve changes substantially and is reduced by a factor of
about (/. /1 )? relative to the unperturbed free-electron laser

gain.
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Erratum: "A Generalized Formulation of free electron lasers in the

low-gain regime including transverse velocity spread and wiggler incoherence"”,

A. Gover and P. Sprangle, J. Appl. Phys. 52, 599 (1981)

The following are corrections to mistakes and omissions in the above
paper.

(1) Eq. (17): A,A L

(2) Eq. (36): add @; after the first temm

(3) Eq. (45) should read:

(o) _ ) 2, a2 2

g% (0,8,u) = o [-(®+8%) /05 ] g, 0)
(4) Eq. (L6):

o £ .

o = [ g

o o pz [] z

(5) Inequality (48) should read:

E o’th/pz << 1/(2Y )

q%h - z0 LO

(6) 1Inequality two lines after Eq. (50) should read:

i
'f < 2 %n/Pan <1 (L %n/zth | 1)
» A A 5
"d (1+B )Bzoa;oyoz 23-loYoz
3 i
¥ (7) 1Insert (after the paragraph of Eq. (50))
*
'.‘ Substituting in (L8) yz Y /(1+Y° B }, we find out that a sufficient ;
1
e condition for satisfying (50) is
! Q,
Pen = B << 1/y,-
’ zZ0

PRANI D XYW - SR &
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In most accelerators this condition is not difficult to satisfy. Further~

more, we should point out that this condition is primarily a condition for
reduced higher harmonic operation. A Fourier series expansion of the ex-
ponential function in (46) reveals indeed that when the inequality is not
satisfied, the high harmonics gain becomes large. The gain of the funda-
mental harmonic falls down then, but at a moderate rate.

If one keeps in (38) the second order expansion of (17) in terms of

a and P, then in (L4) an additional term is added at the right hand side:

2 2
% 25 Z5B— 2. When inequality (53) is used for this term with z=f, we
z' " p,(u)
get a second limitation on the beam angular spread
2
q
2 th X
= —— < -
q%h 2 < 5zo L
Pro

Comparing the two conditions on the beam angular spread, we find out
that the latter (second order) condition is more stringent than the first
order condition if kok > thi/Y;i. Since this is usually the case, we con-
clude that the second order condition on the angular spread is the dominant
one, and negligible second harmonic gain is usually automatically guaranteed

in helical wiggler FELs which satisfy this condition and operate in the low

linear gain regime.
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